Bertrand mate of timelike biharmonic Legendre curves in Lorentzian Heisenberg group Heis3
نویسندگان
چکیده
منابع مشابه
on characterization of spacelike dual biharmonic curves in dual lorentzian heisenberg group
in this paper, we study spacelike dual biharmonic curves. we characterize spacelike dual biharmonic curves in terms of their curvature and torsion in the lorentzian dual heisenberg group . we give necessary and sufficient conditions for spacelike dual biharmonic curves in the lorentzian dual heisenberg group . therefore, we prove that all spacelike dual biharmonic curves are spacelike dual heli...
متن کاملtangent bishop spherical images of a biharmonic b-slant helix in the heisenberg group heis3
in this paper, biharmonic slant helices are studied according to bishop frame in the heisenberg group heis3. we give necessary and sufficient conditions for slant helices to be biharmonic. the biharmonic slant helices arecharacterized in terms of bishop frame in the heisenberg group heis3. we give some characterizations for tangent bishop spherical images of b-slant helix. additionally, we illu...
متن کامل1-type and biharmonic frenet curves in lorentzian 3-space*
1-type and biharmonic curves by using laplace operator in lorentzian 3-space arestudied and some theorems and characterizations are given for these curves.
متن کاملOn timelike surfaces in Lorentzian manifolds
We discuss the geometry of timelike surfaces (two-dimensional submanifolds) in a Lorentzian manifold and its interpretation in terms of general relativity. A classification of such surfaces is presented which distinguishes four cases of special algebraic properties of the second fundamental form from the generic case. In the physical interpretation a timelike surface Σ can be viewed as the worl...
متن کاملClosed Timelike Curves
In this paper, we explore the possibility that closed timelike curves might be allowed by the laws of physics. A closed timelike curve is perhaps the closest thing to time travel that general relativity allows. We will begin our discussing just what closed timelike curves are, and in what kinds of contexts they were first shown to appear. We then explore how one might actually travel on a close...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Demonstratio Mathematica
سال: 2011
ISSN: 2391-4661
DOI: 10.1515/dema-2013-0316